
Ledger Loops: Hashlocked IOUs make the

world go round.

Michiel B. de Jong

September 2018

Abstract

LedgerLoops is a novel financial technology. Rather than a cryp-

to-currency or new form of money, it is better viewed as an alter-

native to money. At its core is the concept of hashlocks.

In this whitepaper, the Whispering Merchants problem serves

as a simplified abstraction of economic exchange in general, where

assets flow in loops. Traditionally, money would flow in the oppo-

site direction, thus solving the coordination problem by effectively

reducing the loop to a chain of one-to-one transactions. But money

has a number of downsides, mainly due to the need to trust people

other than your direct economical neighbors. Value fluctuations in

a currency act as a single point of failure, which can have devastat-

ing effects on economic trade. LedgerLoops aims to allow assets

to move around, while every trader only needs to trusts their own

direct peers.

LedgerLoops is a novel solution to the Whispering Merchants

problem, based on a cryptographic trigger (hashlock) which acti-

vates each local IOU, rather than moving some sort of currency

around the circle of merchants in the opposite direction.

1 The Whispering Merchants Problem

In the Whispering Merchants problem, merchants sit in a circle, fac-

ing outward. Each merchant can only communicate with their two di-

rect neighbors in the circle. Each merchant wants to offer an asset

to their clockwise neighbor, and obtain an asset from anti-clockwise

neighbor. Each merchant trusts their immediate neighbors to keep any

promises they make, but they do not trust anyone else (thus excluding

fiat money as an option), nor are they interested in any other asset than

the item offered by their anti-clockwise neighbor (thus excluding com-

modity money). The problem exists in achieving cooperation between

the merchants so that all assets move clockwise by one merchant.

1

Abraham Bethany

ChadDorus

Figure 1: Abraham has a Banana to offer Bethany. Bethany has a Car-

rot for Chad. Chad has a Durian for Dorus. Dorus, in turn, has an

Apple to offer, in which Abraham is interested.

= trade

Abraham Bethany

ChadDorus

Figure 2: Using money to decompose the flow of assets, into four one-on-

one transactions. Money is the traditional standard solution for clearing

trade between strangers, and requires a monetary token to travel in

the counter-direction of the trade flow (black arrows). Each participant

takes a devaluation risk from the moment they accept the token to the

moment they successfully forward it.

To give an example, consider 4 merchants, Abraham, Bethany, Chad

and Dorus, sitting in a circle, facing outward.

What makes the Whispering Merchants problem hard is that for in-

stance in this example, Abraham initially has no way of obtaining the

apple from Dorus, since he has nothing of interest to offer to Dorus.

Abraham also has no knowledge of the existence of Chad, and he does

not trust Chad.

The LedgerLoops website (https://ledgerloops.com) contains a dis-

cussion of various money systems, none of which satisfy the requirement

that each participants only trusts their own immediate neighbors.

2 Hashlocks

This whitepaper proposes a solution to the Whispering Merchants prob-

lem, called LedgerLoops. It is based on cryptographic triggers (’hashlocks’).

A hashlock consists of two parts: a challenge and a solution. The

challenge can be included as a condition in contracts. Once the solution

has been made public, all contracts are activated.

An IOU (short for "I owe you") is a message or document represent-

2

A A A A AB B B B

C C CD D

1) 2) 3) 4) 5)

Figure 3: Step 1) Each participant uses the same hashlock to send a

cryptographically triggered IOU. Step 2) Only Abraham can solve the

hashlock, and uses the solution as a LedgerLoops trigger to claim the

Apple. Step 3) Dorus reuses the trigger to claim the Durian. Step 4)

Chad can now claim the Carrot. Step 5) Bethany claims the Banana from

Abraham. This safely coordinates all four transactions in one atomic

trigger.

ing a debt. A hashlocked IOU contains the same data as a standard IOU

(debtor, beneficiary, asset owed, etc.), plus a hashlock challenge.

The IOU is without value until the beneficiary presents a solution of

the hashlock. In the current version of the LedgerLoops protocol, the

hashlock challenge is defined by the SHA-256 hash of a random string;

the challenge is simply to find the string (or more precisely, a string)

that has the hash value from the challenge. Only the person holding the

original string will be able to do this, yet everybody can easily verify and

agree if a given candidate solution to the challenge is valid or not.

The Whispering Merchants can use hashlocked IOUs as follows to

facilitate their trade. One merchant creates a hashlock by picking a

256-bit string at random (the solution, which they keep secret) and cal-

culating its SHA-256 hash value (the challenge, which is included as

the condition in hashlocked IOU contracts). The identity of this initia-

tor stays obfuscated. Remember all merchants are willing to give their

asset to their clockwise neighbor, but only if they can be sure that their

own anti-clockwise neighbor has a reason to do the same.

The initiator gives a hashlocked IOU to his clockwise neighbor, for

the item he wants to offer. Each next clockwise neighbor does the same.

The details of the hashlock challenge are reused each time, but the item

offered is different in each locally created IOU.

Once the initiator receives a hashlocked IOU from his own anti-clockwise

neighbor, for the item he wants to receive, he presents the solution (now

made public for the first time) to his anti-clockwise neighbor. Each next

anti-clockwise neighbor now gives the asset they offered in exchange for

the solution to the challenge.

Since the challenge used in all hashlocked IOUs was the same one

3

for all trades along the loop, the solution to this challenge acts as a

cryptographic trigger, but its meaning is different from the meaning of

a cryptographic coin: it represents no value, it only represents a "Go!"

signal which all participants recognize. The hashlock does acts as a

means of exchange and as a measure of value in the same way as a

currency would, but it is only used in this specific trade and not as a

store of value that can use gains from one trade to cover expenses in

another unrelated trade. Therefore, LedgerLoops should be considered

an alternative to money, rather than an alternative form of money.

3 The LedgerLoops Protocol (version 0.8)

In 2016, I have implemented a few design iterations of the LedgerLoops

protocol. Future versions are likely to differ from this, but let me de-

scribe roughly how the current version works.

3.1 Peer-to-peer Ledgers

As Graeber noted in his book "Debt: the first 5,000 years" [1], peer-

to-peer debt is useful for (in my words) time-skewed barter between

two peers: I give you something now, and you give me something in

exchange tomorrow; in the meantime, a debt exists. This is why Ledger-

Loops is based on peer-to-peer ledgers (that is, ledgers on which two

people keep track of what they owe each other).

Before finding a loop along which assets can move around, the first

step of the algorithm consists of agents building up a ledger with each

of their neighbors in the graph, by sending each other standard, uncon-

ditional IOUs, of the following format:

{

"protocol": "ledgerloops-0.8",

"msgType": "ADD",

"msgId": <integer>,

"note": "<a description of why this entry is added>,

"beneficiary": "<identifies party gaining balance; just a nickname>",

"sender": "<usually the other party in the two-peer ledger; just nickname>"

"amount": <integer>,

"unit": "UCR"

}

The Unicurn ("UNIversal CUrrency RefereNce" / "UCR") is defined

relative to a trade-weighted basket of reference currencies, see https://unicurn.com

4

(I’m still working on defining this).

Even if the communication network is reliable and would detect net-

work outages without losing any messages, a malfunction in the re-

ceiver’s software could make it look like this message was received suc-

cessfully when in fact it was not, so to confirm receipt, the recipient

replies with:

{

"protocol": "ledgerloops-0.8",

"msgType": "ACK",

"sender": "<same as in ADD message>",

"msgId": "<same as in ADD message>"

}

As soon as the ’ACK’ message has been sent, both peers update their

copy of the ledger by appending this one entry. So in the current imple-

mentation, LedgerLoops coordination is used to create or cancel debts,

not directly to trigger the movement of assets. Each participant will be

happy if they can exchange one of their incoming debts against one of

their outgoing debt, since the balance of each debt will go down, thereby

minimizing their exposure to credit risk and enabling new trades to take

place. Also, peers can offer goods first, and only if a loop is found, com-

mit to actually owing the delivery of these goods.

3.2 Routing

The Whispering Merchants problem is a best-case scenario for using

LedgerLoops, since all merchants have exactly one in-neighbor (their

anti-clockwise neighbor who offers an asset) and one out-neighbor (their

clockwise neighbor, to whom they offer an asset). In a real economy,

asset offers could form any directed graph between agents, and agents

should first cooperate to detect if any cycles actually exist.

Finding cycles in a graph of which no one has a bird’s eye view is

an interesting computer science problem. Recently, ’Distributed Cycle

Detection and Removal’ [2] (’DCD’) was included in a non-free IEEE

publication. Unfortunately, due to the scientific journal’s policy, no pub-

lic version of the algorithm is available yet (you can buy the article from

the IEEE website), but I can try to explain it in my own words:

• each leaf node (one that has either only in-neighbors or only out-

neighbors), goes into ’deactivated’ mode, and initiates a bread-first

wave of messages through the network; from the point of view of

each node, these messages mean as much as "I am sure I’m not

5

part of a cycle".

• each internal node will go into ’deactivated’ mode and forward the

wave of messages to their out-neighbors as soon as they have re-

ceived a message from each of their in-neighbors. Vice versa, they

will send out a message to all their in-neighbors as soon as they

have received one from all their out-neighbors.

• after waiting long enough, nodes that have not deactivated yet, can

know that they are either on a cycle, or on a path from one cycle

to another. At least, nodes that want to start a depth-first search

for cycles, can now discard all neighbors from whom they receive

such a message, and drastically reduce their search space.

This algorithm is more decentralized than Rocha-Thatte. Another

simple algorithm would be to forward tokens from node to node, along

a depth-first search (’DFS’), until a back-edge is found.

I previously worked on a combination of DCD with DFS, but I now

think that DCD’s "I am not part of a loop" messages are hard to use in

a changing graph where cycles are created and removed often. Instead,

I’m now just using BFS in both directions whenever an edge is added to

the network: Bidirecional Breadth-First Search (BBFS).

3.2.1 Bidirectional Breadth-First Search (BBFS)

Consider a network of interconnected agents. Each agent can decide

that they want to participate in a LedgerLoop, accepting a COND mes-

sage from what we’ll call their "C-side" neighbor, and forwarding it to

what we will call their "F-side" neighbor. When the F-side neighbor

sends a FULFILL message in response, they’ll also send a FULFILL mes-

sage to their own C-side neighbor.

In order to coordinate the formation of LedgerLoops, agents can send

each other PROBES messages. Each PROBES message has a list of

F-wise probes, traveling in the direction in which FULFILL messages

would travel, and C-wise probes that travel in the direction in which

COND messages would travel.

Agents will generally be able to define a partial ordering on their

list of neighbors, such that neighbor C comes before neighbor F in the

list if the agent would like to participate in a LedgerLoops where that

neighbor C acts as their C-side neighbor, and that neighbor F acts as

their F-side neighbor.

An agent can create a probe from scratch, by generating a random

8-byte string, and sending it as a C-wise probe to F, and also as an F-wise

6

probe to C.

The format for a PROBES message is as follows:

{

"protocol": "ledgerloops-0.8",

"msgType": "PROBES",

"cwise": [<8 bytes in a lower-case hex string>*],

"fwise": [<8 bytes in a lower-case hex string>*]

}

When a PROBESmessage comes in from neighbor C, the agent should

forward the C-wise probes to neighbor F. Likewise, when a PROBES

message comes in from neighbor F, the agent should forward the F-wise

probes to neighbor C. An exception to this is if the same probe was al-

ready sent to the same neighbor before. In case of a C-wise probe, the

agent can send a COND instead. In case of an F-wise probe, the agent

could send a COND back to the neighbor who sent the F-wise probe,

although this may lead to duplication where one pair of probes would

trigger two LedgerLoops. It’s up to each agent to decide how long to

wait before forwarding probes, and whether to forward each probe to

each eligible neighbor at all. That way, each agent has some say in how

much bandwidth and CPU time they spend on the sending of probes.

It might seem like a very unwise idea to potentially generate a flood

of messages across the whole network in response to a single local in-

teraction between peers, but in practice I think the number of messages

necessary will be within reason. Let’s calculate an estimation. Imag-

ine each agent has 10 C-wise neighbours and 10 F-wise neighbours, and

each link between two agents is capped at 1 Mbps. We could append a

trace number to the probe string that gets longer each hop. Suppose an

agent only forwards each probe along the top 16 pairs, then this choice

can be recorded in 4 bits. Suppose we cap trace lengths at 6 hops,

then a probe will occupy the 32 bits of its UUID, plus 1 bit for cwise vs

fwise plus between 0 and 32 bits for the trace. The number of bits to be

transmitted for one added network link is then:

(20 * 35 + 200 * 39 + 2,000 * 43 + 20,000 * 47 + 200,000 *

51 + 2,000,000 * 54) = 119,234,500

But this link also adds bandwidth to the network. So it will occupy

its own bandwidth for the first 120 seconds of its existence. I think this

is an acceptable price to pay.

7

3.3 Hashlocked IOUs

The initiator generates a random string and calculates its SHA-256 hash

value. It then sends the following message to an out-neighbor:

{

"protocol": "ledgerloops-0.8",

"msgType": "COND",

"msgId": <integer>,

"condition": <256 bits in a lower-case hex string>,

"note": "<a description of why this entry is added>,

"beneficiary": "<identifies party gaining balance; just a nickname>",

"sender": "<usually the other party in the two-peer ledger; just nickname>"

"amount": <integer>,

"unit": "UCR"

}

Note that a sender can offer parts of a specific asset, even if the

asset is a physical item that cannot be split into parts. For instance,

I could send you 10 IOUs, each referring to the blue bicycle I showed

you as the "unit", and each for an amount of 0.1. It is important to use

each hashlock only once, so that it is clear which IOU is being triggered,

and this is also tracked correctly in our peer-to-peer ledger afterwards.

As soon as I owe you 10 times one tenth of the blue bicycle, you can

claim the entire bicycle. You could also claim the bicycle after I owe

you only 8 tenths of it, after which you would owe me the equivalent

of 2 tenths of the blue bicycle. This requires a more long-term form

of trust between us than one-off trades of entire assets or fungeable

assets. Another option would be to value the blue bicycle in terms of a

more common unit of value (for instance a standard government-issued

currency, a crypto-currency, a rare metal, or kiloWatt-hours of energy).

This could simplify our peer-to-peer ledger. For the conditional promise

I send you, it only matters that we agree on what the unit of value refers

to, and unlike currencies which are used as money, this unit of value

does not need to have any meaning to anyone apart from the two peers

who discuss it.

Each participant reuses the ’condition’ part of the conditional pro-

mise they receive, and creates their own outgoing hashlocked IOU. The

amount and unit should be roughly the same, so that when the forwarded

CONDmessage loops around to the initiator, the value is still roughly the

same and the initiator will decide to publish the hashlock’s solution. See

the section about "Multi-lateral netting at equilibrium" below for a more

precise discussion of exchange rate setting.

8

For now, the Unicurn is the only unit of value allowed for value esti-

mates in COND messages.

Once a conditional promise message reaches the initiator, describing

the unit of value the initiator desires, and promising an amount which

the initiator finds acceptable compared to the amount of asset he offered

when starting the loop, trade becomes possible. The initiator confirms

that the incoming conditional promise message uses the same challenge

details which he created, and the solution to the challenge is sent round

in the opposite direction:

{

"protocol": "ledgerloops-0.8",

"msgType": "FULFILL",

"sender": "<sender of COND message>",

"msgId": "<same id as COND message>",

"preimage": "<original random string in lowercase hex format>",

}

The receiver of a FULFILL message converts the solution field from

its hex string representation, calculates the SHA-256 hash value of the

resulting raw bytes, and converts the hash value back to lowercase hex

representation. If the result matches the hash value from the challenge,

the solution has been verified to be correct. The receiver replies with

the "ACK" message format from earlier (using the msgId from the "FUL-

FILL" message) to confirm to the sender that the solution has been ac-

cepted, and the receiver agrees with the resulting update of their peer-

to-peer ledger. The receiver has now lost the asset from their own ear-

lier conditional promise, but has gained knowledge of the solution to

the challenge used in all conditional promise messages sent earlier. He

uses the solution to create his own FULFILL message and claim the as-

set that was conditionally promised to him by his other neighbor in the

loop. Once all nodes along the loop have done this, the trade is complete.

Just like an ADD message, FULFILL message should be responded

to with an ACK message in order to commit the proposed new entry to

the peer-to-peer ledger on both sides.

If a node decides it has been waiting for too long, it can request

a revokation of the hashlocked IOU they sent earlier, by sending this

messages behind it:

9

{

"protocol": "ledgerloops-0.8",

"msgType": "PLEASE-FINALIZE",

"sender": "<sender of the COND message and also of this message>",

"msgId": "<same id as the COND message>"

}

A node should probably wait a few milliseconds before forwarding a

cryptographically triggered IOU, in case the IOU has been buffered in

a slow place for a while, and now has a "PLEASE-FINALIZE" message

following directly behind it.

To reject a hashlocked IOU you received earlier, use this message:

{

"protocol": "ledgerloops-0.8",

"msgType": "REJECT",

"sender": "<sender of the COND message>",

"msgId": "<same id as the COND message>"

"reason": "human-readable free text",

}

The rejection will only be valid if it is sent by the recipient of the

COND message in question.

A REJECT message can also be used to reject an ADD or FULFILL

message. So the message flows are: (1) ADD-ACK, (2) ADD-REJECT, (3)

COND-[PLEASE-FINALIZE]*-FULFILL-ACK, (4) COND-[PLEASE-FINALIZE]*-

FULFILL-REJECT, (4) COND-[PLEASE-FINALIZE]*-REJECT. Messages can

be repeated to guarantee eventual agreement over a ledger entry (a

ledger entry is uniquely defined by its sender and msgId).

4 Security Discussion

4.1 Assessment Scope

4.1.1 At the participant level

A participant in the LedgerLoops protocol is a human person or legal

organization (the "user") who uses a computer on which LedgerLoops

software (the "app") runs. This computer is potentially also used for

other purposes. The user supplies contact details about other users (the

user’s "neighbors") to the app. This list of neighbors (containing contact

details as well as personal notes such as nick names and profile photos)

is sensitive information.

10

Once the user creates ledgers with their neighbors, the information

in these ledgers (current balance as well as transaction history, and per-

sonal notes added to each transaction, which are likely to reflect evi-

dence of real-world events) is the second item of sensitive information.

Each ledger is also personal between the user and the neighbor in-

volved in that particular ledger; information from one ledger should not

be leaked to one of the other ledgers, or become known to one of the

user’s other neighbors in some other way.

When the app starts trying to route and resolve loops, this activity

affects other software on the same computer, by using network, CPU

and storage resources. The app should also not leak or damage sensitive

information pertaining to other software on the same computer.

If incorrect information were to enter the user’s ledgers, the user’s

real-world assets could be at risk. In this case, as well as when the

app sends low-quality messages to neighbors, the user’s reputation with

their neighbors (debtors and creditors), and possibly the user’s public

reputation. An example of a low-quality message could be one that is

malformed, or one that represents incorrect or unfounded information,

like when the app were to continuously bother neighbors with messages

that convey a statement of intent, convincing the neighbors to invest

effort, but never or rarely leading to a trade deal, thus wasting other

participants’ time.

When the app initiates a LedgerLoops challenge, and the private key

is lost, this is not a problem, because the app can reply with reject mes-

sage instead of a satisfy-condition message when the time comes. If any

of the other participants lose the solution while forwarding it, it could

ask their debtor to resend it (this is not currently implemented, but this

all seems quite low-risk, since the solution does not have any monetary

value).

However, if the initiator’s private key is leaked, this would oblige the

initiator to fulfill their conditional promise, even if they themselves don’t

receive the item they desired.

To summarize, the user would be negatively affected if:

• any of the following information is leaked, either to one of the

user’s other neighbors, or publicly:

– identity of the user’s neighbors

– information contained in notes about the user’s neighbors

– ledgers (current balance as well as transaction history)

– information contained in notes on the ledgers

11

– other information, unrelated to the app but present on the

computer

– the private key for a challenge that has not been solved yet

• the app would make excessive use of any of the following computer

resources:

– network bandwidth

– CPU resources

– storage resources

• the app’s copy of the following information would be damaged (it

may trigger real-world events, or be the only copy of this data):

– ledger balance and transaction history

– other information, unrelated to the app but present on the

computer

• the app’s incorrect or unreasonable behavior damages the user’s

reputation with:

– debtor neighbors

– creditor neighbors

– third parties or the general public

4.1.2 At the network region level

Once a number of users rely on the network beyond their own neigh-

bors to find and resolve ledger loops, these users would be negatively

affected if this network clogs up or breaks down, affecting participants

who are not neighbors of the user, but who would be candidates to par-

ticipate in a ledger loop in which the user and their neighbors would

also participate.

Even if the valid participants of the network are unaffected, an ex-

cess number of useless participants would make the valid participants

hard to find.

Likewise, useless network traffic could slow down the processing of

valid network traffic.

The network as a whole is decentralized, and several independent

regions (connected components in the network graph) could exist. Low-

quality areas in the network will mostly affect users at a short network

distance from the low-quality region. Therefore, in terms of valuable as-

sets, we should consider network regions, more than the global network

12

as a whole. We can write these assets at the network region level down

as:

• average quality of participants at distance d from a user (d>=2)

• average quality of messages received from a user’s neighbor, but

triggered by messages at distance d>=2.

4.2 System Modeling

As already defined a bit in the previous subsection, a user uses the app

running on a computer. The app sends LedgerLoops messages, only to

direct neighbors of the users, although these messages might cause rip-

ple effects, triggering messages to other participants at distance d>=2.

The messages sent between neighboring users travel over a secure com-

munication channel (the sending and receiving client software for this

communication channel is not part of the app). Neighbors of a user can

be divided into two categories: debtor (owes or offers something to the

user), and creditors (to whom the user owes or offers something). In-

centives for cooperation can be different for debtors than for creditors.

For instance, if a creditor misbehaves, the user can block them (ignore

messages from them) and tell the neighbor user in question through a

side channel to change their app’s behavior if they still want to access

their credit. If the creditor does not comply, the user can confiscate their

credit. However, if a debtor misbehaves, the user cannot so easily block

their messages, as this would effectively allow the debtor to never pay

back their debt - or at least not pay it back via LedgerLoops.

4.3 Threats

4.3.1 The user’s own computer and LedgerLoops app

While the user’s app is running on the computer, it needs to access all

information and resources mentioned in the assessment scope above.

Therefore, a malfunctioning app would put all these assets at risk. When

the user’s computer is running, even if the app is not, there is probably

no way to protect against potential malware on the computer. Even if

the app stores its data in encrypted format, the user would have to un-

lock this data when starting to use the app, and any passphrase or secret

used to do this while starting up the app could be intercepted by such

malware. The computer as a whole could, however, use disk encryption

so that if an attacker gains physical access to the computer, but can not

force the user to enter their passphrase, the data stored on the com-

puter would be safe. In short, if the user’s computer is compromised,

13

the attacker could access the user’s information, damage the user’s rep-

utation, damage the user’s real-world assets, and the user’s reputation.

A malfunction (bug) in the app could also potentially put all of these

assets at risk.

The following threat descriptions all assume the user’s computer is

clean and the app functions correctly.

4.3.2 Social Engineering

A user could be convinced by an attacker to add a neighbor with whom

they don’t have a real-world trust relationship. Adding a malicious deb-

tor could expose information about the user’s creditors. For instance,

if an attacker wants to know if the user frequents a certain restaurant,

they could buy a meal voucher from that restaurant, and at the same

time offer something attractive to the user. If the user accepts the offer

from the attacker, then the next time the user eats at that restaurant, the

user’s app could cooperate with the restaurant’s app and the attacker’s

app to find a loop. If such a loop is found, then the attacker knows that

either the user just visited the restaurant, or the user owes something

to a participant, (who owes something to a participant, who . . .) owes

something to the restaurant.

Adding a malicious creditor could likewise expose information about

the user’s debtors.

4.3.3 Network Area Attacks

Nobody except a user’s own neighbors is allowed to send the user mes-

sages directly, so standard Spam and Denial-of-Service attacks will not

work to degrade a user’s LedgerLoops app (it might still work to affect

the user’s computer or the user’s internet connection, of course).

However, apart from the attacker becoming a neighbor of the victim

(which should be quite hard if the user is careful), the attacker could

try to control many nodes in the network area surrounding the user (so

nodes that are two or three hops away from the victim). This would

allow the attacker to degrade the quality of the user’s network area,

for instance by injecting a lot of useless messages (low-quality traffic),

and by making nodes look attractive for cooperation but never reaching

agreement.

4.3.4 Traffic Analysis

Even if all of the user’s neighbors (and their computers and their apps)

are clean, an attacker in the same network area as the user could ob-

14

tain information about the user by analysing their own ledger loops. If

the attacker has several two-hop connections with the user, they could

potentially analyse the messages they receive, and send their own mes-

sages to test hypotheses, to gather metadata about the user. They will

not be able to know which of the ledger loops the user took part in, and it

could be that what they are modeling as the targeted user is in fact two

or three different users, but by playing it smart, they could potentially

create an ever more detailed model of the targeted user.

4.3.5 Figure-8 Attacks

An attacker could aim to control two or more participants in the same

ledger loops. However, if a ledger loop goes through participants 0, 1,

2, . . . , 9, 0 and the attacker controls nodes 3 and 7, we can write this as

"0, 1, 2, (3/7), 4, 5, 6, (3/7), 8, 9, 0". This is equivalent to two separate

ledger loops: "0, 1, 2, (3/7), 8, 9, 0" and "(3/7), 4, 5, 6, (3/7)", where the

3 → 7 traffic from the first loop cancels out the 7 → 3 traffic from the

second one. A threat where the attacker controls two nodes in a ledger

loop can therefore be analyzed as two separate attacks.

4.3.6 Timing Analysis

One of the most worrisome threats may be timing analysis: in principle,

a participant in a ledger loop knows that the ledger loop contains at least

three participants, but does not know an upper bound of the number of

participants. However, knowledge about network link speeds can help

reveal such an upper bound. For instance, if the attacker knows that

each network hops takes one second, and that a message was passed

around the loop in four seconds, then they know there are no more than

four participants in the loop. It does not work in the other direction: if

a message takes 1000 seconds to go around the loop, this might be be-

cause one of the participants stalled for 996 seconds before forwarding

the message. However, if all participants are known to always stall one

second, then a roundtrip time of 8 seconds can also give evidence of a

length-four loop. Randomizing the stall time helps a little bit to obfus-

cate loop length, but the attacker can average out this randomization by

analyzing a large number of ledger loops together. Also, if all partici-

pants happen to randomly pick a low stall time, then a message could

still travel around that loop in under 5 seconds. The most dangerous

form of this threat is that where the attacker discovers with reasonable

certainty that they are participating in a length-three loop, since this

tells the attacker that their own debtor is also a neighbor of their own

15

creditor.

4.3.7 Lying

LedgerLoops is a tool with which a user keeps track of debts and credit

between themselves and their direct neighbors. The app has no lever-

age on the real world, other than through the user’s own actions. This is

why the neighbor always relies on the real-world trustworthiness of their

own neighbors. For instance, an attacker who owes the user a significant

asset could simply tell the user that their computer was compromised,

and they no longer have a record of this debt. Even if the communi-

cation channel used cryptographic signatures, the attacker could deny

having signed that message, stating that in fact some malware on their

computer must have caused this message to be sent.

4.4 Mitigation

To mitigate the threats described above, a user should make sure their

computer is clean, and use a peer-reviewed LedgerLoops app. They

should regularly make backups of ledger data, and regularly check if

all ledgers still look as expected. The app should help the use to block

neighbors who send low-quality messages, and to contact them through

other channels, resolving the issue before removing the block. Users

should not rely on their LedgerLoops app as the only record of their

credits and debts, so that users can fall back on other records (emails,

chat logs, paper documents etc.) in case a the information in a ledger

becomes incorrect. Also, settling peer-to-peer debts before they become

to big (for instance using plain-old-banking-system bank transfers) can

help to keep the credit risk to which a user is exposed within reasonable

limits.

4.5 Competition between loops

It could happen that two loops partially overlap, meaning the two loops

compete for the same liquidity; only one of them can be resolved, after

which no liquidity would be left for the other loop to be resolved as well.

When a conflict of interests occurs, nodes who have an interest in one

loop getting resolved, could try to hinder the other loop from being dis-

covered or used. One specific way to do this would be an in-network

denial of service attack, where a node sends a lot of fake COND trans-

actions into the other loop; if they are undistinguishable from legitimate

COND messages, they will be forwarded and use up bandwidth without

16

any FULFILL messages ever getting generated in their response. One

possible remedy for this would be if the creator of the routeId also cre-

ates the hashlocks, and signs them, so that outsiders cannot send spam

into a loop. A more efficient solution would be if the liquidity goes to

the highest bidder, but that would still not remove the incentive for that

highest bidder to attack its competitors and ease that high price back

down. Probably, some transitivity of trust will still be needed here; when

you forward a PROBES, COND, or FULFILL message, you have to take

some responsibility for the message you are forwarding. Consider this a

bit of an open research question for the moment, where more discussion

can occur once we actually see these spam attacks in practice.

5 Roadmap

The current version of the LedgerLoops protocol still lacks a few fea-

tures.

A LedgerLoops app could allow the user to define minimal exchange

rates for pairs of assets the neighbor owes and is owed. The danger in

this is that every candidate participant in a loop would try to make a

profit, and the asset which the initiator is offered by their anti-clockwise

neighbor would be worth much less than the asset the initiator offered

for trade in the beginning. This brings the candidate participants into

a sort of prisoner’s dilemma: they should all try to make reasonable

trade offers, otherwise no agreement will be reached, and nobody can

trade. On the other hand, when agreement is reached, each participant

could feel like they might have been able to negotiate a better deal if

they would have negotiated a bit harder. This is a reality in all economic

trade, but allowing it to occur in LedgerLoops negotiations will probably

require more messages to be passed before a participants agree on a

loop, and these extra messages may expose more information about each

participant than in the current version of the protocol.

Finally, the current version of the protocol is limited to each par-

ticipant trading part of one of their credits against part of one of their

debts. In practice, it may be attractive for a user to exchange a par-

tial reduction of debt at one creditor against an increase of debt at an-

other creditor, or to exchange an increase of credit at one debtor for a

decrease of credit at another debtor. This would require a change in

the routing algorithm, since this makes every debtor and every creditor

both a potential in-neighbor and a potential out-neighbor. The app would

then probably allow users to indicate in more detail which creditors and

which debtors they prefer over others (for instance, a user would typi-

17

cally prefer to have a credit at a neighbor they trust more, or with whom

they have closer or more frequent real-world contact).

An advantage of this would be that users can choose to increase the

general liquidity of their network surroundings by defining capacitances

- for instance, instruct the app to always participate in a ledger loop in

either direction with their closest friends for up to a set maximum of

for instance 10 USD. If a close-nit group of friends all set a 10 USD

capacitance with all their neighbors, this means more trades between

one group member, and outsider, and another group member, become

routable. Likewise, local hubs (like for instance a neighborhood commu-

nity center, a bar, a sportsclub, or another place where people socialize)

could act as capacitors, providing liquidity for users who often visit this

place and have a ledger between themselves and the hub. Users could

use a credit at the hub to pay for their drinks at the bar there, or in the

case of a sports club, to pay their membership fee. Mobile phone oper-

ators who provide prepaid SIM cards could also act as capacitors, since

the prepaid SIM card is essentially already a ledger (this is part of the

reason behind the success of M-Pesa in Kenya).

The term capacitor / capacitance here comes from the analogy with

the role these terms play in analysis of AC currents in analogue elec-

tronic circuits.

6 Usability Discussion

6.1 Comparison with other financial technologies

LedgerLoops has an obvious downside when compared to for instance

crypto-currencies: a ledger update has no real-world effect unless you

trust your own neighbors. You can only obtain credit in a LedgerLoops

network if you have neighbors who you trust to keep this credit safe for

you. Crypto-currencies don’t perform very well either as a long-term

value store, but at least they allow you to store your value against "the

network in general", instead of having to pick a specific other partici-

pant.

However, given that users will supposedly have to trust their direct

trade peers anyway, and as long as the user defines a maximum cred-

it/debt level for which it trusts each neighbor, it also has obvious advan-

tages over other currently known financial technologies.

Without the use of LedgerLoops, trade can only be facilited, and

value can only flow around the economy, if it is offset by a counter-flow

of some sort. This could be either a commodity that has real value, or

18

some sort of token whose value is based on trust that your future trade

peers will also attribute value to this sort of token.

Such trust in a (by itself worthless) token is often based on hype

(hoping a certain crypto-currency will stay popular), or on war (politi-

cians will generally send their soldiers to war to defend a government-

issued currency when the power of the government is at risk), or on

citizen-paid taxes (often used to bail out failing banks). LedgerLoops

avoids this reliance on globally defined tokens, which makes it a much

more decentralized technology. Any group of people can start to use

the LedgerLoops protocol within their community, without relying on

the health of a globally defined currency or on the health of a global

network. If a hype of activity in LedgerLoops transaction rises and falls

in some local geographic area, this has very little effect on the ability

of people in another geographic area to use the LedgerLoops protocol.

That being said, of course, communities would benefit from connecting

with another community, and this would automatically happen if a few

users form part of both communities. This network effect is very similar

to how the internet works ("Connectivity is its own Reward").

6.2 Starting to use LedgerLoops

First of all, let me state that version 0.8 of LedgerLoops should be con-

sidered a developer preview, and further development will most likely be

needed before the protocol is production-ready. Until we gain a better

understanding of the network dynamics in more complex topologies, its

use is only recommended for academic experiments, not for real-world

trade. Users are advised to only trade very small assets, for instance

up to 1 USD, since we can’t yet predict what dynamics would arise, and

what other security considerations may be discovered during such initial

experiments.

Some interactions between users, such as offering and requesting a

sale or debt, are left out of scope; the ADD message can only be used

to add an entry to the ledger, and it’s assume that the other peer will

understand from the note field what that transaction is about and where

it came from.

Also, the current version of the software used on the demo page is

not recommended for production; I probably need to rewrite it from

scratch, using what I learned in the last few weeks developing this ver-

sion 0.8 of LedgerLoops. Importantly, the code has also not been re-

viewed by a security expert yet, so it’s not unlikely that this implemen-

tation contains a few vulnerabilities; in short, please only use it to run

simulations, don’t entrust it with data about your real-world trade peers

19

yet.

One path to start using LedgerLoops in the real world, would be to

develop an Android app which can access a smartphone’s addressbook,

and use the API of an existing end-to-end encrypted messaging platform

for delivering the LedgerLoops messages to the user’s neighbors. This

would require a potential user to convince their real-world trade peers

to install the same app, which would be impractical for casual one-time

trade peers, but could work well for, for instance, people who share a

house, or for the members of a sports club (where the administration of

membership fees could be a driving use case).

Another path would be integration in existing peer-to-peer ledger

apps, like Splitwise, Settle Up, and (to a lesser extent) payment and

banking apps like the Dutch Bunq app and the German Opentabs.de

app. Integration with LedgerLoops could be an interesting option for

the publishers of such apps, as it could allow them to offer their existing

users an attractive new feature: the ability to sometimes (not always)

settle bills without requiring the user to register their creditcard or link

their traditional bank account. Of course, if no LedgerLoop exists, none

will be found, and the bill will stay unsettled as it is.

In any case, integrating the current version of the LedgerLoops pro-

tocol in an existing app is not yet recommended, but it could become an

interesting innovation opportunity in the near future, once LedgerLoops

grows out of the experimentation phase.

7 Conclusion

This is a work in progress, I hope you enjoyed reading it. Your comments

and contributions would be very welcome, please post them as GitHub

issues for public discussion, here:

https://github.com/ledgerloops/ledgerloops-whitepaper/issues

LedgerLoops is a research project that was started by Michiel de

Jong, and that is open to participation. The LedgerLoops protocol, as

a solution to the Whispering Merchants problem and as an alternative

to money, is published patent-free under a Creative Commons license

(CC-BY-SA 3.0).

References

[1] David Graeber. Debt: The First 5000 Years. Melville House, 2011.

20

[2] Gabriele Oliva; Roberto Setola; Luigi Glielmo; Christoforos N. Had-

jicostis. Distributed cycle detection and removal. IEEE Trans-

actions on Control of Network Systems, 2016. Available from

http://ieeexplore.ieee.org/document/7516708/.

21

